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We employ density functional theory using a method which expresses the total electronic density
as a sum over “atomic” densities. The “atomic” denisties are determined self-consistently from a
variational treatment of the total energy, which includes terms to account for kinetic energy due to
the overlapping densities from separate atomic sites.

I. INTRODUCTION

Following the development of the Thomas-Fermi-Dirac
statistical method, the electronic density, rather than the
wave function, often has been used as the basic variable
for expressing the energy of a collection of atoms. In
early applications of this density functional approach, the
total density was simply assumed to be the sum of the
densities of the separate atoms.1 This approch provided a
qualitative description of atomic forces which guided the
development of empirical models. A major advance was
provided by Gordon and Kim2 (GK) who showed that re-
markablly good quantitative results could be achieved for
closed shell systems by carefully evaluating the “electron
gas” expressions using free atom densities.

A few years before the GK work Hohenberg and Kohn3

proved that the ground state energy of a system of elec-
trons was uniquely expressed as a functional of the den-
sity regardless of the external potential. This remark-
able result added credibility to the density functional ap-
proach, although it evidently was not a motivating factor
for the GK work. Soon after the Hohenberg-Kohn the-
orem was published Kohn and Sham4 (KS) proposed a
variational method for applying the density functional
approach. In this method the density of an N electron
system is given by the sum of the squares of the N low-
est energy self-consistent solutions of an effective one-
electron Schrödinger’s equation whose potential is de-
fined, variationally, to minimize the total energy. The
many calculations of total energy, beginning with those
of Janak et. al.5 (ten years after the KS work and 4 years
after that of GK), have established the highly successful
field known today as density functional theory.

In this paper we describe a computational method
for applying density functional theory using a KS-like
variational proceedure with the density expressed as a
sum over atomic-like densities. The method, which we
call self-consistent atomic deformation (SCAD), can be

viewed also as an extension of the GK-model which al-
lows complete relaxation of the atomic densities. This
approach is taken also in the work of Cortona6, but with
applications limited to densities expressed as overlap-
ping spherical atoms. In the SCAD method the atomic
densities are allowed to have nonspherical deformations.
Other self-consistent atomic models can be found in the
works of Muhlhausen and Gordon7, LaSar8, Bukowin-
ski and coworkers9 and Edwardson10. Francisco et. al.11

include self-consistency in an atomic model that orthogo-
nalizes the orbitals of an atom with those of its neighbors
to obtain spherical densities and pair potentials following
the GK method. The direct energy minimization tech-
nique of Lacks and Gordon12, which accounts for non-
spherical ions by incorporating spherical bonding charges
between spherical ions, has been quite successful in treat-
ing various oxides.

Our SCAD method evolved from an effort to extend
the potential induced breathing model13 to handle non-
spherical ions, a feature known to be essential for treating
oxide ferroelectrics14. Ivanov and Maksimov15 have de-
veloped a closely related approach to deal with nonspher-
ical ions, including those in oxide ferroelectrics. We were
motivated substantially by Edwardson’s work together
with a general effort to develop first principles meth-
ods for ferroelectric materials16. We have preveously
given brief discussions of the SCAD model17–20 which
includes some applications of the SCAD for spherically
symmetric ions (SSCAD). A detailed description of the
SSCAD method is given by Stokes et. al.21, for which
computer code is available. It has been applied in a clus-
ter expansion technique to compute the MgO-CaO phase
diagram.22 Our first application of SCAD for nonspher-
ical atoms was to compute Born effective charges, the
quantities that give the change in polarization resulting
produced by structural distortions, for ferroelectric ox-
ides and alkaline earth oxides.23 It has been argued24 that
the calculation of polarization using overlapping atomic-
like densities, or Clausius-Mossetti type models, is fun-
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damentally flawed. However, the argument is based on a
false assumption about the way polarization is computed
in such models.25 Reasonable results have been obtained
for polarization and related properties for a variety of
compounds using the SCAD method.26–29

II. THE SCAD MODEL

Following Hohenberg and Kohn3 we write the total
energy E as a functional of the electronic density n:

E[n(r)] = T [n(r)] + Ees[n(r)] + Exc[n(r)] ; (1)

where T is the kinetic energy, Ees is the electrostatic en-
ergy and Exc is the exchange and correlation energy. We
write the total density as a sum of atomic-like densities,

n(r) =
∑
i

ni(r−Ri) (2)

centered at Ri. Each atomic-like density is expressed
as a spherical harmonic expansion about an origin at its
nucleus,

ni(r) =
∑
l,m

n
(i)
l,m(r)Yl,m(r̂). (3)

To this point we have not made any approximation since
the form of the charge density imposes no constraints. In
other words, assuming we know the functionals in Eq.(1),
the formulation for density is sufficiently general to de-
termine the absolute minimum of E. Of course, we do
not know T or Exc exactly. The calculations reported
here use the local approximation for Exc given by Hedin
and Lundqvist32. The kinetic energy is approximated by

T [n(r)] =
∑
i

T0[ni(r)] + Tk[n(r)]−
∑
i

Tk[ni(r)], (4)

where T0[ni(r)] is the kinetic energy of non-interacting
electrons centered about the site i and Tk is a functional
to account for additional kinetic energy due to the over-
lapping of densities from neighboring sites. The density,
ni, is determined from the solutions of a one electron
Schrödinger’s equation for site i with a potential

vi(r) = ves[n(r)] + vxc[n(r)] + vk[n(r)]− vk[ni(r)] , (5)

derived variationally from the total energy.20 Here, ves
is the electrostatic potential due to the atomic nuclei as
well as the electron density and vk (vxc) denotes the func-
tional derivative of Tk (Exc) with respect to density. To
compute ni from vi we first express vi in terms of spher-
ical harmonics,

vi(r) =
∑
l,m

v
(i)
l,m(r)Yl,m(r̂), (6)

and then solve the ith Schrödinger’s equation. The de-
tails involved in these two steps are described in the next
two sections.

The self-consistent solution for vi (and hence, ni and
n), obtained by occupying the lowest one electron energy
levels for the entire system, allowing for charge trans-
fer when indicated, minimizes the total energy in accord
with Janak’s theorem30. This is demonstrated with re-
sults for the SSCAD model21,23 and with results for the
SCAD model in section??.

The caluclations presented in this paper use the local
Thomas-Fermi form for the overlap contribution to the
kinetic energy:

TTF = A

∫
n5/3(r)dr (7)

where

A = π4/335/3/10 (8)

(Hartree atomic units are used throughout this paper.)
We have also examined nonlocal functionals of the form

Tk = αTTF + β

∫
| ∇n(r) |2

n
dr (9)

and

Tk = A

∫
n5/3(r)F [s(r)]dr (10)

where

s(r) =
| ∇n(r) |

2n(r)kf (r)
(11)

and kf , the local Fermi wave vector, is given by

kf (r) = (3π2n(r))1/3. (12)

For completeness and possible future use in the SCAD
method, derivation of the potentials corresponding to the
above expressions for Tk are presented in appendix A.
Lacks and Gordon33 have studied several kinetic energy
functionals with these forms by comparing with Hartree-
Fock calculations for He and Ne atom pairs.

The proceedure for obtaining a self consistent solu-
tion for the total energy is easly stated. 1) Atomic-like
denisites are used to compute potentials at each site using
Eq.(5). 2) New densities are obtained from the solutions
of the corresponding one-electron Schrödinger equations.
Steps 1 and 2 are repeated, with optimal mixing of old
and new densities, until convergence is achieved. In the
final step (3) the total energy is determined from the
converged potentials and densities. In practice, there
are many details to be considered in each step. These
are presented and discussed below in three correspond-
ing sections.

There are, of course, certain numerical techniques that
are common to all three steps (sections). For example,
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we represent both charge densities and potentials as a
sum over radial functions times spherical harmonics, a
functional form that results naturally from the method
we choose for solving the one-electron Schrödinger equa-
tions. Presentation of details common to more than one
section are done sequentially, with appropriate references
to the other sections.

III. CALCULATION OF THE POTENTIAL

In this section we address the following problem: Given
charge densities on each site i, expressed as in Eq.(3),
determine similarly expressed potentials (Eq.(6)). The
radial dependences of n(i)

l,m(r), v(i)
l,m(r) and similar func-

tions are kept on a mesh that starts a r = 0 and has
separations between points that increase logarithmically.
A detailed discussion of the mesh and related integration,
interpolation etc. is offered in appendix B.

First of all, we add and subtract the term vxc[ni(r)] to
the potential (Eq. 5),

vi(r) = ves[n(r)] + vxc[ni(r)] + vov[n(r)]− vov[ni(r)],

(13)

where vov = vk + vxc.
The electrostatic potential includes contributions from

the nuclear charge as well as the electronic density and,
unless the net moments of charge for l ≤ 2 happen to
be zero, it is long ranged in nature; which is to say that
contributions from all atoms in the system must be in-
cluded. The electrostatic potential can be expressed as
a linear superposition of the corresponding potentials of
each “atom”, or from any other way we want to partition
the charge density. On the other hand, the overlap poten-
tial is a nonlinear function of the density, and therefore
cannot be so decomposed. Fortunately, it is short ranged
and can be decomposed into a part that is smooth (com-
pared to the behavior of the density in the vicinity of an
atomic nucleus) and a part which, by design, is linear.
The smooth part, along with other smooth parts, dis-
cussed below, and collectively called vs, are computed on
a 3 dimensional grid with a relatively coarse radial mesh
and an angular grid chosen for efficient integration35.

Let Rc be a cut-off radius within which the densities
of atom pairs have appreciable overlap. The potential
due to atoms farther than Rc from the ith site are in-
cluded using expressions for point poles. Contributions
from monopoles, dipoles and quadrupoles are computed
using the Ewald method while contributions from l > 2
poles are included in a similar manner with direct-scace
sums only (Appendix C). To account for the electro-
static potential due to near neighbors, with separations
| Ri −Rj |< Rc, one could “simply” transform the Yl,m
expansions of v(j)

es to similar expansions about an origin
at the ith site. The method for changing the origin of a
shperical harmonic expansion (Löwdin transformation)

is discussed in appendix D. In fact, we include only the
l = 0 portion of the jth electrostatic potential using the
Löwdin technique and include the l > 0 contributions,
which are relatively smooth near the atomic nuclei, in
vs.

A smooth part of the overlap potential is created by
adding and subtracting the term

∑′

j vov[n
(j)
0 (r)], where

n0 denotes the l = 0 portion of the density and the
prime on the summation indicates the j=i term is omit-
ted. The subrtacted term combines with the last two
terms of Eq.13 to give the smooth overlap contribution
included in vs. The added term is included, along with
the l = 0 part of the electrostatic potential from near
neighbors, using the Löwdin transformation.

The nonspherical part of the onsite exchange-
correlation potential, defined by vxc[ni(r)] − vxc[n(i)

0 ] is
also smoothly varying, owing to the fact that the den-
sity becomes spherical near the nucleus. Therefore, it is
conveniently included in vs as well.

To summarize, the potential for the ith atom is decom-
posed, for computational purposes, as follows:

vi(r) = v(i)
on(r) + v(i)

s (r) + v
(i)
L (r) + v(i)

p (r) + v(i)
n (r); (14)

where each term, with subscripts denoting onsite,
smooth, Löwdin, poles (outside Rc) and nuclear. The
onsite nuclear part is included in von while nuclear con-
tributions from far neighbors are included in vp.

The onsite term is the sum of the radial exchange-
correlation term (introduced above to create a contribu-
tion to the smooth term) and the electrostatic potential
due to the onsite electrons and the nuclear charge with
atomic number Zi.

v(i)
on(r) = vxc[n

(i)
0 (r)] +

∫
ni(r′)
| r− r′ |

dr′ − Zi
r
. (15)

Substituting the expanded forms of ni (Eq.3) and | r −
r′ |−1 (addition theorem), the angular integrations are
trivially performed to give

v(i;l,m)
on (r) = δl0

(
vxc[n

(i)
0 (r)]−

√
4πZi
r

)
+r−(l+1)G

(i)
l,m(r) + rlH

(i)
l,m(r) (16)

where

Gl,m(r) =
4π

(2l + 1)

∫ r

0

x(l+2)n
(i)
l,m(x)dx (17)

and

Hl,m(r) =
4π

(2l + 1)

∫ ∞
r

x(1−l)n
(i)
l,m(x)dx (18)

The radial integrations are carried out as described in
appendix B. The values of G(i)

l,m(∞) give the multipole

moments that enter v(i)
p (see appendix C).
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The smooth potential

v(i)
s (r) = vxc[ni(r)]− vxc[n(i)

0 (r)]

+ vov[n(r)]− vov[ni(r)]−
∑′

j vov[n
(j)
0 (r)]

+
∑′

j

(
ves[nj(r)]− ves[n(j)

0 (r)]
)

(19)

is computed by accumulating values for the required den-
sities and ves on the course mesh centered at the i site.
This is the most time consuming part of the calcula-
tion. For every neighbor j the values of each radial func-
tion of the spherical harmonic expansions must be de-
termined by interpolation and the corresponding values
of Yl,m(r−Rj) computed as well. Once values of v(i)

s (r)
are determined on the course radial mesh, the coefficients
of the spherical harmonic expansion are determined by
numerical integration over solid angle Ω.

v(i;l,m)
s (r) =

∫
v(i)
s (r)Y ∗l,m(r̂)dΩ (20)

The resultant functions of r are then interpolated from
the course to the dense radial mesh.

The spherical harmonic expansion of the Löwdin po-
tential

v
(i)
L (r) =

∑
j

′
(
vov[n

(j)
0 (r)] + ves[n

(j)
0 (r)]

)
(21)

is computed as described in appendix D. Since it can
have sharp features near the neighbors at Rj , additional
values are determined in these regions in order to ac-
curately carry out integrations for contributions to the
Hamiltonian and total-energy.

Evaluation of the point-pole part of the potential
(vp) requires the multipole moments, i.e., the values of
G

(i)
l,m(∞), combined with, for monopole terms, the nu-

clear charges (Zi). Details of this part of the calculation
are discussed in appendix C.

Finally, we include the potential due to neighboring
nuclei,

v(i)
n (r) =

∑
j

′ Zj
|r−Rj | , (22)

where the sum over j excludes the j = i term and terms
with | Ri −Rj |> Rc. As already mentioned, contribu-
tions from nuclei outside the cut-off sphere are included
in the monopole term of v(i)

p and the i = j term is in-
cluded in the onsite potential von. Spherical harmonic
expansions about the ith site are given by the addition
theorem.

IV. CALCULATION OF CHARGE DENSITY

The first consideration in calculating the electron den-
sity is to choose a set of basis functions for each site for

use in solving the Schrödingers’ equations for each vi.
A convenient approach, which we have used in previous
work, is to select the Slater-type radial functions from
published tables38,39. However, this approach has limited
variational freedom. More recently we have employed
other methods for constructing basis functions that re-
move this limitation. This is discussed further below.
In either case, the density used in the first iteration can
be obtained from the published tables38,39 of atomic or-
bitals.

To illustrate the method for solving the Schrödingers’
equations for each site, assume a set of Slater-type func-
tions are given (for each site) to build a basis set for ex-
panding the wave functions at each site. In subsequent
discussion we drop the site index. Slater functions have
the form rnse−βsr where ns are integers (ns ≥ 0) and
values for βs range from ∼ 1 to a few tens, depending on
the atom. The larger values of βs are needed for heav-
ier atoms to give an accurate representation of the inner
core levels. Likewise, we need radial mesh points nearer
the nucleus for the heavier atoms. For convenience, we
determine the first mesh point from the maximum value
of β (r1 = g/(2βmax)). See Appencix B for detail.

The tabulated Slater functions are associated with par-
ticular angular momenta ls. We define a minimal basis
set from the radial functions times spherical harmonics
Ylsm(r̂). An extended basis can be created that allows
for greater angular variation by multiplying the radial
functions by Ylm(r̂) with l > ls. Thus, in general, the
basis functions are given by

φi(r) = rnse−βsrYlm(r̂) (lmax ≥ l ≥ ls). (23)

Strictly speaking, lmax should not be greater than ns to
avoid having unphysical results for the wave function at
the origin. In practice, this does not introduce noticeable
error in the total energy provided lmax ≤ ns+2, evidently
because of the r2 factor that enters the integrations over
volume. If higher l’s are needed then radial functions for
correspondingly higher ns should be generated to cover
an equivalent range of radii. This is discussed in greater
detail below in the presentation of methos for systemat-
ically increasing the variational freedom.

Schrödinger’s equation for a given atomic site is solved
in terms of the basis functions φi. The proceedure is
straight-forward and well known, so we do not go through
it in detail here. Instead, we give a brief discussion of the
method with enough detail to emphasize aspects of the
problem that are relevant for implimenting the SCAD
model.

The expansion coeficients (cj) for a wave function
ψ(r) =

∑
j cjφj(r) are determined by solving the matrix

equation

(H− εS)c = 0 (24)

where

Hij =
∫
φ∗i [−

1
2
∇2 + v(r)]φj(r)d3r, (25)
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Sij =
∫
φ∗iφj(r)d3r (26)

are the elements of the overlap matrix S and c denotes
the array of expansion coeficients.

Depending on the particular atom and the number and
choice of additional basis functions included beyond the
minimal set, some eigenvalues of S may be quite small.
This indicates that S is nearly singular and could imply
that the additional functions were not very carefully se-
lected. If this is the case, numerical noise can result in
the total energy as a function of structural distortion if
nearly linearly dependent combinations of basis functions
are included in the representation of the wave function.
This problem is automatically avoided by transforming
to an orthogonal basis which excludes the space corre-
sponding to eigenvectors of S with “small” eigenvalues.
The calculations we have carried out so far indicate that a
reasonable definition of “small” to be ∼ 0.0001. We refer
to this cut-off value as the basis optimization parame-
ter (BOP) because we want it to be as small as possible
to give the maximum variational freedom allowed by the
basis functions without producing noisy results.

Evaluation of the matrix elements is straight forward.
The kinetic energy operator in spherical coordinates sep-
arates into the familiar radial and angular momentum
operators. Integrations for fixed radius are given by the
well known “3-j” coefficients. Radial integrations are car-
ried out as discussed in Appendix B. If Slater-type basis
functions are used, then radial integrations for contribu-
tions from onsite and near-neighbor nuclei take the form∫
rne−βrdr. Analytic expressions for such integrals can

be used for n 6= −1 and simple approximate formulae
are available for n = −1.34 However, their use in the
SCAD code did not provide any benifit over numerical
integrations.

The Hamiltonian matrix for each non-equivalent atom
in the unit cell is computed and diagonalized. Then the
lowest energy levels for the entire system are occupied
by the available electrons. For some systems this may
lead to charge trasfer among the atoms to achieve a com-
mon highest occupied level and give the minimum to-
tal energy. Once the occupation numbers for the energy
levels of each atom are determined, the wave functions
are squared, weighted by the occupation numbers and
summed to get the total density for each atom. The
squared wave functions contain procucts of two Ylm’s,
which are readily converted into a linear combination of
single Ylm’s using appropriate 3-j coefficients. We note
that the maximum l in the charge density expansion is
two times the maximum l in the wave function.

During the iteration cycles the radial functions in the
charge density expression only need to be determined on
the logarithmic mesh. Extra points needed for accurate
integration over sharp features in vL(r) are determined
for the density at the final iteration to obtain an accurate
total energy. Of course, the radial integrations involving
the basis functions must be carried out accurately over

the structure in vL in each iteration. The sharp features
in vL are determined at the extra points by interpolation
from values for the integrals (given in Appendix D) on
the logarithmic mesh.

V. CALCULATION OF TOTAL ENERGY

Straight forward but tedious. Will fill in later as time
permits.

Notes to author - Mention values for mesh growth fac-
tor. Relate iteration error to total energy precision.

VI. APPENDIX A: KINETIC ENERGY
FUNCTIONALS

Lacks and Gordon33 proposed non-local correction to
the Thomas-Fermi kinetic energy functional that have
the form of Generalized Gradient Approximation func-
tionals for the exchange-correlation energy. Thus in their
approximation, the kinetic energy of an electron gas with
density n(r) is given by

T [n(r)] = Ak

∫
d3r n(r)5/3F [s(r)] , (27)

where for an unpolarized electron gas

Ak = π4/335/3/5 (28)

if the energy is in Rydbergs, and s(r) is a measure of the
local non-uniformity of the electron gas:

s(r) =
|∇n(r)|

2n(r)kf (r)
. (29)

Here kf is the local Fermi wavevector:

kf (r) = (3π2n(r))1/3 , (30)

so s(r) is dimensionless. Further, since s = 0 for a uni-
form electron gas, it follows that F [0] = 1.

Lacks and Gordon consider only those functions F[s]
which are even in s, so we define a new quantity

σ(r) = s(r)2 =
|∇n(r)|2

4n(r)2kf (r)2
. (31)

Since kf ∝ n1/3 we can take

σ(r) = αn(r)−8/3|∇n(r)|2 , (32)

where

α = (24π2)−2/3 . (33)

Then, writing F [σ] in place of F [s], we have
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T [n(r)] = Ak

∫
d3r n(r)5/3F [σ(r)] . (34)

Our task is to determine the Kohn-Sham “potential” aris-
ing from (34).

We wish to study the change T [n] → T [n] + δT [n] as
we make the change n→ n+δn. Keeping only the terms
linear in δn we have

δT [n(r)] = Ak
∫
d3r n(r)2/3{ 5

3F [σ(r)]δn(r)

+ n(r)F ′[σ(r)]δσ(r)}+O[(δn)2] , (35)

where δσ is the change in σ as n→ n+ δn:

δσ(r) = − 8
3
σ(r)
n(r)δn(r)

+ 2αn(r)−8/3∇n(r) · ∇δn(r) +O[(δn)2] . (36)

Substituting (36) into (35), and separating the integrals
containing δn and ∇δn, we find

δT [n(r)] = 1
3Ak

∫
d3rn(r)2/3{5F [σ(r)]

− 8σ(r)F ′[σ(r)]}δn(r)

+ 2αAk
∫
d3rF

′[σ(r)]∇n(r)
n(r) · ∇δn(r) . (37)

Applying the divergence theorem to the second line of
(37), and noting that integrals over the boundary of a
periodically repeated unit cell vanish, we find

δT [n(r)] = 1
3Ak

∫
d3rn(r)2/3{5F [σ(r)]

− 8σ(r)F ′[σ(r)]}δn(r)

+Ak
∫
d3r2α |∇n(r)|2

n(r)2 F ′[σ(r)]δn(r) (38)

− 2αAk
∫
d3r{F ′[σ(r)]∇

2n(r)
n(r)

+ F ′′[σ(r)]∇n(r)·∇σ(r)
n(r) }δn(r) . (39)

Using (32) on the second line of (39), we obtain the final
expression

δT [n(r)] = Ak
∫
d3rδn(r)

(
1
3n(r)2/3{5F [σ(r)]

− 2σ(r)F ′[σ(r)])} − 2αF ′[σ(r)]∇
2n(r)
n(r)

−2αF ′′[σ(r)]∇n(r)·∇σ(r)
n(r)

)
. (40)

The Kohn-Sham potential is related to its functional
by the functional derivative,

vT (r) =
δT [n(r)]
δn(r)

, (41)

so from (40) we find

vT (r) = Ak
(
n(r)2/3{5F [σ(r)]

− 2σ(r)F ′[σ(r)])}/3− 2α{F ′[σ(r)]∇2n(r)
+ F ′′[σ(r)]∇n(r) · ∇σ(r)}/n(r)) . (42)

VII. APPENDIX B: RADIAL FUNCTIONS

Radial functions are stored on a logarithmic mesh
chosed so that the interval between points increases ex-
ponentially. Specifically, the nth interval is given by

rn+1 − rn = r1(1 + g)n (43)

where the value of r1 is selected to be the first nonzero
mesh point (r0 = 0) and g is a selected growth factor.
Eq.(43) implies

rn = [(1 + g)n − 1]
r1

g
(44)

The derivative of r with respect to n,

r′n = ln(1 + g)(1 + g)n
r1

g
, (45)

is used to facilitate radial integrations. The usual quadra-
ture weights (assuming r is just a constant times n) are
simply multiplied by r′n. We find that few hundred raial
mesh points are sufficient to provide integrated densities
to an accuracy of 10−7 using Simpson’s rule.

The integration of a smooth function of r times one
with a discontinuity in its radial derivative must be
treated carefully. In the SCAD model, discontinuities
appear in the radial derivatives of the potential at val-
ues of r corresponding to the positions of neighboring
atoms. This results from the lower limit of the Löwdin
integrals in Eq.(69). These sharp features in the poten-
tial can produce noise in the total energy as a function
of structural distortions if integrations are carried out
by straight-forward quadrature on a fixed radial mesh.
We handle this problem by a proceedure which retains
points on a fixed radial mesh and includes extra points
that vary with structural distortions. As the total poten-
tial for a given atom is accumulated on the fixed mesh,
we omit Löwdin contributions for a selected number of
points on either side of the corresponding neighbor dis-
tances. Then, for each neighbor j, the Löwdin potential
is evaluated at radii given by Gaussian quadrature from
the beginning of the omitted region to Rj and from Rj
to the end of the omitted region. Only a few Gaussian
points are needed for accurate integration on either side
of Rj . Typically, 20 to 30 neighbors are needed for con-
vergence, so a total of about two hundred extra points
are needed to handle the integrations over the sharp fea-
tures in the potential. This is a small part of the overall
calculation.

As mentioned in section III the most computation-
ally intensive part of the calculation is in determing the
smooth part of the potential, vs. This requires evaluation
of the densities and nonspherical parts of electrostatic
potentials due to neighbors at each point on the course
mesh. Typically, an atom may overlap with about 25
neighbors and the course mesh may have ∼ 30 radial
points for ∼ 100 directions. Assuming radial functions
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are required up to l = 4, this gives a total of over 2 mil-
lion (2×15×25×30×100) interpolations per atom. We
use a cubic spline interpolation with our indices taken to
be the independent variable. This minimizes the number
of operations in each interpolation without any loss of
accuracy.

VIII. APPENDIX C: EWALD’S METHOD

Ewald’s method provides a rapidly convergent formula
for the potential of a lattice of point charges in a uni-
form compensating background. A good discussion of the
method is given by Slater.36 The method employs linear
superposition of two oppositely charged, but otherwise
identical, Gaussian densities centered at the sites of the
point charges. The negative Gaussian densities combine
with the positive point charges to give a rapidly conver-
gent real space sum for their contribution to the poten-
tial and the positive Gaussian densities combine with the
negative background to give a rapidly convergent Fourier
series expansion for their contribution. The potential at
r due to unit point charges at x(l) + r

′
, where x(l) are

lattice vectors, in a uniform background is given by

vm(r, r
′
) =

4π
V

∑
Q

′ e−(Q2/4ε)

Q2
eiQ·(r−r

′
)

+
∑
l

erfc(| x(l) + r− r
′ |)ε

| x(l) + r− r′ |
− π

V ε2
(46)

where Q are reciprocal lattice vectors, the prime on the
summation over Q indicates the Q = 0 term is omitted
and erfc, the complimentary error function, is given by

erfc(x) =
2√
π

∫ ∞
x

e−y
2
dy (47)

and the last term is a constant of integration needed to
make the result independent of the Gaussian parameter ε.
The value of ε can be adjusted to give rapid convergence
for both real and reciprocal space sums.

We put the point charges a displacement r
′

from the
lattice vectors for convenience in deriving expressions for
the potential due to point dipoles and quadrupoles. For
example, we can place point charges of ±q at r

′
= ±x̂d/2.

The resultant potential at r is given by vm(r, x̂d/2) −
vm(r,−x̂d/2). For small d the lowest order (linear) term
in an expansion of the above expression about r

′
= 0 is

the potential due to a lattice of point dipoles. In particu-
lar, we find the potential due to a lattice of point dipoles
in the α direction is given by

vdα(r) =
4π
V

∑
Q

′ e−(Q2/4ε)

Q2
sin(Q · r)Qα

+
∑
l

(
4ε√
πr2

e−r
2ε2 +

erfc(rε)
r3

)
rα (48)

Similarly, the potential due to point quadrupoles is given
by the second order term in the expansion of vm about
r
′

= 0. We obtain

vqαβ (r) = −2π
V

∑
Q

′ e−(Q2/4ε)

Q2
cos(Q · r)QαQβ

+
rαrβ

2

∑
l

{
2ε√
π

(
2ε2

r2
+

3
r4

)
e−r

2ε2 +
3erfc(εr)

r3

}
− δαβ

2

∑
l

{
2ε√
πr2

e−r
2ε2 +

erfc(εr)
r3

}
(49)

Calculations using these expressions for vd and vq have
been tested against Eq.(46) by modeling collections
of point charges that approximate point dipoles and
quadrupoles.

For the SCAD calculation we require spherical har-
monic expansions of the potentials due to point poles that
lie outside the cut-off radius Rc. Thus we must remove,
from vm, vd and vq, the contributions from nearby poles
with x(l) < Rc. Specifically, these contributions are 1/s
for monopoles, sα/s3 for dipoles and (3sαsβ−δαβs2)/2s5

for quadrupoles where s denotes the separation vector
from x(l) to r. Values for vm, vd and vq, with contri-
butions from nearby poles removed, are determined on
an angular grid for some selected value of r = rs. The
coefficients of the spherical harmonic expansion are then
determined by numerical integration over the surface of
the sphere with radius rs.35 The radial dependence of vd
and vq are solutions of Laplace’s equation, in our case the
rl solutions. The radial dependence of the monopole po-
tential vm contains, additionally, a spherically symmetric
term ∝ r2 that originates from the constant charge back-
ground. We remove this contribution before determining
the spherical harmonic expansion of vm. Of course, it
necessarily sums to zero when the contributions from all
the atoms in the crystal are included. In any case, the
coefficients of the various spherical harmonic expansions
of point-pole potentials, need only be determined for one
value of rs. A reasonable choice is rs ∼ 1/2; large enough
to avoid numerical uncertainties that could arise for small
r and small enough to limit contributions that would re-
quire spherical harmonics with large l for high accuracy.
In each iteration the point-pole spherical harmonic ex-
pansion coefficients are multiplied by the corresponding
computed moments and summed over all atoms in the
unit cell to give v(i)

lr . Specifically,

v
(i;l,m)
lr (r) = rl

∑
j,k

c(j, k)v(l,m)
pp (j, i, k) (50)

where the j index designates vpp = vm, vd1 , vd2 , vd3 ,
vq11 , vq21 , vq22 , vq31 , vq32 and vq33 for j = 1, . . . , 10 re-
spectively, the k index sums over all the atoms in the
unit cell and the c(j, k) are given by the multipole mo-
ments of each atom k and constants which transform be-
tween the Cartesian and spherical harmonic discription.
In particular,
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c(1, k) =
G

(k)
0,0(∞)
2
√
π
− Zk, (51)

c(2, k) = −<[G(k)
1,1(∞)]

√
8π/3 (52)

c(3, k) = =[G(k)
1,1(∞)]

√
8π/3 (53)

c(4, k) = G
(k)
1,0(∞)

√
4π/3 (54)

c(5, k) = <[G(k)
2,2(∞)]

√
8π/15−G(k)

2,0(∞)
√

4π/45 (55)

c(6, k) = −=[G(k)
2,2(∞)]

√
32π/15 (56)

c(7, k) = −<[G(k)
2,2(∞)]

√
8π/15−G(k)

2,0(∞)
√

4π/45 (57)

c(8, k) = −<[G(k)
2,1(∞)]

√
32π/15 (58)

c(9, k) = =[G(k)
2,1(∞)]

√
32π/15 (59)

c(10, k) = G
(k)
2,0(∞)

√
16π/5 (60)

IX. APPENDIX D: LÖWDIN
TRANSFORMATION

Given a function expressed as a spherical harmonic
expansion, the method for transforming that function
to a spherical harmonic expansion about a new origin
is known as Löwdin’s α-expansion.37 Here we are in-
terested in expanding a spherically symmetric function,
F (r′) = f(r′)Y0,0 in terms of spherical harmonics about
a new origin. We use the “prime” to denote coordinates
with respect to the “old” origin. The two origins are sep-
arated a distance a along the z-axis. In this case, the
spherical harominic expansion about the new origin can
be written

F (r) =
∑
l

gl(r)Yl,0(r̂) (61)

where

gl(r) =
√

2l + 1
∫ π

0

f(r′)Pl(cosθ)sin(θ)dθ (62)

and, in terms of the polar angle θ, r′2 = r2 + a2 −
2arcos(θ). Expressing the integration in terms of the
variable r′ gives

gl(r) =
√

2l + 1
ar

∫ a+r

|a−r|
f(r′)Pl

(
r2 + a2 − r′2

2ar

)
r′dr′

(63)

For l ≤ 4 we find

g0(r) = d0(r)I0(r), (64)

g1(r) = d1(r)[−I1(r) + (r2 + a2)I0(r)], (65)

g2(r) = d2(r)[ 3
2I2(r)− 3(r2 + a2)I1(r)

+ 1
2 (3r4 + 2r2a2 + 3a4)I0(r)], (66)

g3(r) = d3(r)[− 5
2I3(r) + 15

2 (r2 + a2)I2(r)

− 1
2 (15r4 + 18r2a2 + 15a4)I1(r)

+ 1
2 (5r6 + 3r4a2 + 3r2a4 + 5a6)I0(r)], (67)

g4(r) = d4(r)[ 35
8 I4(r)− 35

2 (r2 + a2)I3(r)

+ 15
4 (7r4 + 10r2a2 + 7a4)I2(r)

− 5
2 (7r6 + 9r4a2 + 9r2a4 + 7a6)I1(r)

1
8 (35r8 + 20r6a2 + 18r4a4 + 20r2a6 + 35a8)I0(r)], (68)

Il(r) =
∫ r+a

|a−r|
f(x)x2l+1dx, (69)

and

dl(r) =
√

2l + 1
(2ar)l+1

, (70)

This is an efficient form for gl because the integrals can
be obtained by interpolating from tabulated values of the
integral with limits from zero to the radial mesh values.
However, for small r this expression for gl becomes nu-
merically unstable, owing large cancellations that counter
the effect of having rl+1 in the denominator of dl. A way
around this problem is to expand f in a Taylor series
about a. The integrals,

Il(r) =
∫ a+r

a−r

∑
n

f (n)

n!
(x− a)nx2l+1dx, (71)

where f (n) denotes the nth derivative of f evaluated at a,
can then be performed analytically, the resultant polyno-
mials subtituted into the corresponding expressions for gl
and each term with some power of r in the denominator
has an expression in its numerator that sums identically
to zero. We obtain, after considerable algebra, the follow-
ing expressions for gl when f is expanded to 4th order:

g0(r) = f (0) + r2

3af
(1) + r2

6 f
(2)

+ r4

30af
(3) + r4

120f
(4), (72)
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g1(r) =
√

3[( r3

15a2 − r
3 )f (1) − r3

15af
(2)

+ ( r5

210a2 − r3

30 )f (3) − r5

210af
(4)], (73)

g2(r) =
√

5[( r4

35a3 − r2

15a )f (1) − ( r4

35a2 − r2

15 )f (2)

+ ( r6

630a3 + r4

210a )f (3) − ( r6

630a2 − r4

210 )f (4)], (74)

g3(r) =
√

7[( r5

63a4 − r3

35a2 )f (1) − ( r5

63a3 − r3

35a )f (2)

+ ( r7

1386a4 + r5

210a2 − r3

105 )f (3)

− ( r7

1386a3 − r5

1890a )f (4)], (75)

g4(r) =
√

9[( r6

99a5 − r4

63a3 )f (1) − ( r6

99a4 − r4

63a2 )f (2)

+ ( r8

2574a5 + 5r6

1386a3 − 2r4

315a )f (3)

− ( r8

2574a4 + r6

4158a2 − r4

945 )f (4)], (76)

We use the small r expansion for r < rl where rl is
the value of r where the magnitude of the difference be-
tween the values of gl, computed from the two expres-
sions above, is minimum. This occurs typically at a few
tenths of a Bohr, where the differences between the two
values of gl are quite small, on the order of 1 part in 106.
The values for f (n) are determined numerically using a
5-point interpolation formula.34

Alternatively, one can determine the gl by numerical
integration of Eq.(62). With this approach special care
must be exercised when r − a is small, i.e. where the
slope of gl is discontinuous. The difficulty is manifested
by the peak in gl at r = a becoming increasingly sharp
with incrasing accuracy of the numerical integration.
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